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The disturbance due to mechanical and thermal sources in a homogeneous, isotropic,
micropolar generalized thermoelastic half-space is investigated by the use of Laplace}
Fourier transform technique. The analytical expressions of displacement components,
normal force stress, tangential force stress and temperature "eld so obtained have been
inverted by using a numerical technique. Numerical results are presented graphically for
a magnesium crystal like material.

( 2001 Academic Press
1. INTRODUCTION

The linear theory of elasticity is of paramount importance in the stress analysis of steel,
which is the most common engineering structural material. To a lesser extent linear
elasticity describes the mechanical behaviour of other common solid materials, e.g.,
concrete, wood and coal. However, this theory does not apply to the behaviour of many of
the new synthetic materials of the elastomer and polymer type, e.g., polymethyl-
methacrylate (perspex), polythylene, polyvinyl chloride.

Modern engineering structures are often made up of materials possessing an internal
structure. Polycrystalline materials, materials with "brous or coarse grain structure come in
this category. Classical elasticity is inadequate to represent the behaviour of such materials.
The analysis of such materials requires incorporating the theory of oriented media.
&&Micropolar elasticity'' termed by Eringen [1] is used to describe the deformation of elastic
media with oriented particles. A micropolar continuum is a collection of interconnected
particles in the form of small rigid bodies undergoing both translational and rotational
motions. Typical examples of such materials are granular media and multimolecular bodies,
whose microstructures act as an evident part in their macroscopic responses. The physical
nature of these materials needs an asymmetric description of deformation, while theories for
classical continua fail to accurately predict their physical and mechanical behaviour. For
this reason, micropolar theories were developed by Eringen [1}3] for elastic solids, #uids
and further for non-local polar "elds and are now universally accepted.

The coupled theory of thermoelasticity has been extended by including the thermal
relaxation time in the constitutive equations by Lord and Shulman (L}S) [4] and Green
and Lindsay (G}L) [5]. These new theories eliminate the paradox of in"nite velocity of heat
propagation and are termed as generalized theories of thermoelasticity. In view of the
experimental evidence available in favour of "niteness of heat propagation speed,
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generalized thermoelasticity theories are supposed to be more realistic than the
conventional theory in dealing with practical problems involving very large heat #uxes
and/or short time intervals, like those occurring in laser units and energy channels.
Recently, Green and Naghdi (G}N) [6}8] proposed a new generalized thermoelasticity
theory by including the &&thermal-displacement gradient'' among the constitutive variables
that permit treatment of a much wider class of heat #ow problems. An important feature of
this theory, which is not present in other thermoelasticity theories, is that this theory does
not accommodate dissipation of thermal energy.

The linear theory of micropolar thermoelasticity was developed by extending the theory
of micropolar continua to include thermal e!ects by Eringen [9] and Nowacki [10].
Di!erent authors [11}14] discussed di!erent problems in micropolar elasticity/micropolar
theory of thermoelasticity.

The purpose of the present paper is to determine the normal displacement, normal force
stress, tangential couple stress and temperature distribution in a homogeneous, isotropic,
micropolar generalized thermoelastic half-space due to instantaneous mechanical and
thermal sources by applying integral transform techniques. Numerical techniques have
been used to invert the integral transforms. The components of stresses, displacements and
temperature "eld are calculated for the mechanical and thermal impulses. Applications of
the present problem may also be found in the "eld of steel and oil industries. The present
problem is also useful in the "eld of geomechanics, where the interest is about the various
phenomenon occurring in the earthquakes and measuring of displacements, stresses and
temperature "eld due to the presence of certain sources.

2. FORMULATION OF THE PROBLEM

A homogeneous, isotropic, micropolar generalized thermoelastic solid occupying the half
space is considered in an undisturbed state and initially at uniform temperature ¹

0
. The

rectangular Cartesian co-ordinates are introduced having origin on the surface z"0 and
z-axis pointing vertically into the medium. An instantaneous normal point mechanical or
thermal source is assumed to be acting at the origin of the rectangular Cartesian
co-ordinates. Let ¹ (x, z, t) be the change in temperature of the medium at any time.

Following Eringen [15], Lord and Shulman [4] and Green and Lindsay [5], the "eld
equations and stress}strain temperature relations in micropolar generalized thermoelastic
solid without body forces, body couples and heat sources can be written as
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where j, k, K, a, b, c are material constants, o is density, j is the microinertia, K* is the
coe$cient of thermal conductivity, l"(3j#2k#K) a

t
, a

t
is the coe$cient of linear

thermal expansion, C* is the speci"c heat at constant strain, t
0
, t

1
are the thermal relaxation

times, u the displacement vector, / the microrotation vector. For the Lord}Shulman (L}S)
theory t

1
"0, N"1 and for Green}Lindsay (G}L) theory t

1
'0 and N"0. The thermal

relaxations t
0

and t
1

satisfy the inequality t
1
*t

0
*0 for the G}L theory only.
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We de"ne the non-dimensional quantities as
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Using equation (11) in equations (7)} (10), we obtain the equations in non-dimensional form,
after supressing the primes as
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The displacement components can be written as
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where q (x, z, t) and t (x, z, t) are scalar potential functions and U (x, z, t) is the vector
potential function.
Using equation (16) in equations (12)} (15), we obtain
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Applying the Laplace and Fourier transforms de"ned by
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The solutions of equations (23) and (24) are
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are roots of equations (23) and (24), respectively, and are given by
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2.1. CASE I: MECHANICAL SOURCE ACTING ON THE SURFACE

Plane boundary is subjected to an instantaneous normal point force and the boundary
surface is isothermal. Therefore, the boundary conditions in this case are
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where P is the magnitude of the force applied.
Making use of equations (4), (5), (11) and (16) in the boundary conditions (32) and

applying the transforms de"ned by equation (22) and substituting the values of qL , ¹K , tK
and /K

2
from equations (26)} (29) in the resulting expressions, we obtain the expressions for

displacement components, stresses and temperature "eld as
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Subcase I: For L}S theory, A and D in the expressions (33)}(38), take the form
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Subcase II: For G}L theory, A and D in the expressions (33)} (38), become
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Subcase III: For the Green and Naghdi theory [8], equations (1), (3) and (4) are written as
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and K* is not the usual thermal conductivity but a material characteristic constant of the
theory and in the G}N theory is given by K* ("C* (j#2k)/4).

With these considerations, A, D and f
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2.2. CASE II: THERMAL POINT SOURCE ACTING ON THE SURFACE

When the plane boundary is stress free and subjected to an instantaneous thermal point
source, the boundary conditions in this case are
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where P is the magnitude of the constant temperature applied on the boundary.
With the help of these boundary conditions (46), the expressions for displacement
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Particular cases:
Replacing D

i
by D@

i
(i"1,2, 4) de"ned by equation (47) in the expressions (33)} (38), we

obtain the displacement components, stresses and temperature distribution as

(i) For L}S theory with A, D and Q
i
(i"1, 2) de"ned by equation (40).

(ii) For G}L theory with A and D given by equation (41).
(iii) For G}N theory with A, D and f

i
(i"1, 2) given by equation (45).

3. INVERSION OF THE TRANSFORMS

To obtain the solution of the problem in the physical domain, we must invert the
transforms in equations (33)} (38) for all the theories in case of mechanical source and
thermal source applied. These expressions are functions of z, the parameters of Laplace and
Fourier transforms p and m, respectively, and hence are of the form fK (m, z, p). To get the
function f (x, z, t) in the physical domain, "rst we invert the Fourier transform using
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are even and odd parts of the function f K (m, z, p), respectively. Thus, expression

(48) gives us the Laplace transform fM (x, z, p) of the function f (x, z, t).
Now, for the "xed values of m, x and z, the function fM (x, z, p) in the expression (48) can be

considered as the Laplace transform gN (p) of same function g (t). Following Honig and Hirdes
[16], the Laplace transformed function gN (p) can be inverted as follows:

The function g (t) can be obtained by using

g(t)"
1

2ni P
C`*=

C~*=

e1tgN (p) dp, (49)

where C is an arbitrary real number greater than all the real parts of the singularities of gN (p).
Taking p"C#iy, we get

g (t)"
eCt

2n P
=

~=

e*5ygN (C#iy) dy. (50)



474 R. KUMAR AND S. DESWAL
Now, taking e~Ctg(t) as h (t) and expanding it as Fourier series in [0, 2¸], we obtain
approximately the formula
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Since the in"nite series in equation (52) can be summed up only to a "nite number of
N terms, so the approximate value of g(t) becomes
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Now, we introduce a truncation error E
T

that must be added to the discretization
error to produce the total approximate error in evaluating g (t) using the above formula.
The discretization error is reduced by using the &&Korrecktur method'' and then the
&&e-algorithm'' is used to reduce the truncation error and hence to accelerate the
convergence.

The Korrecktur method formula, to evaluate the function g(t) is
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We shall now describe the e-algorithm, which is used to accelerate the convergence of the
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, m"1, 2, 3,2. The actual procedure to invert the Laplace transform

consists of equation (54) together with the e-algorithm. The values of C and ¸ are choosen
according to the criteria outlined by Honig and Hirdes [16].

The last step is to calculate the integral in equation (48). The method for evaluating this
integral is described by Press et al. [17], which involves the use of Romberg's integration
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with adaptive step size. This, also uses the results from successive re"nements of the
extended trapezoidal rule followed by extrapolation of the results to the limit when the step
size tends to zero.

4. NUMERICAL RESULTS AND DISCUSSION

We take the case of magnesium crystal [18] like material subjected to mechanical and
thermal disturbance for numerical calculations. The physical constants used are:
o"1)74 g/cm3, j"0)2]10~15 cm2, j"9)4]1011 dyn/cm2, k"4)0]1011 dyn/cm2.
K"1)0]1011 dyn/cm2, c"0)779]10~4 dyn, K*"0)6]10~2 cal/cm s3C, C*"
0)23 cal/g3C, e"0)073, P"1, ¹

0
"233C, t

0
"6)131]10~13 s, t

1
"8)765]10~13 s.

The distribution of normal displacement, normal force stress, tangential couple stress and
temperature "eld with distance &x' at the plane z"1 for Lord}Shulman (L}S) theory,
Green-Lindsay (G}L) theory and Green Naghdi (G}N) theory have been shown by solid
line (*), small dashed line (- - - -) and long dashed line (} }) respectively. These distributions
are shown graphically in Figures 1}24 at three di!erent times, 0)1, 0)5 and 1)5 s for
mechanical and thermal sources.

4.1. CASE I: MECHANICAL SOURCE

Variations of t
zz

at t"0)1 s for the three theories (L}S, G}L and G}N) have been shown
in Figure 1 and it is observed that the behaviour of t

zz
for G}L theory is opposite to L}S and

G}N theories. The values of u
z
and m

zy
decrease sharply as x lies between 0)x)2)0 and

oscillate as x increases further for L}S, G}L and G}N theories at t"0)01 s and these
variations have been shown in Figures 2 and 3 respectively. Figure 4 shows the variations of
temperature "eld ¹ at t"0)1 s and it is observed that the range of variations of temperature
"eld for L}S and G}L theories is very small in comparison to G}N theory.
Figure 1. Variations of normal force stress t
zz

with distance x at t"0)1 s (mechanical source).**, L}S; }} } },
G}L; **, G}N.



Figure 2. Variations of normal displacement u
z

with distance x at t"0)1 s (mechanical source). **, L}S;
}} } }, G}L; **, G}N.

Figure 3. Variations of tangential couple stress m
zy

with distance x at t"0)1 s (mechanical source).**, L}S;
}} } }, G}L; **, G}N.
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Figure 5 depicts the variations of t
zz

at t"0)5 s and it is noticed that the variations for
L}S and G}N theories are oscillatory and lie in a very small range in comparison to G}L
theory. The behaviour of u

z
and m

zy
for three di!erent theories is similar although their

magnitude values are di!erent as x varies from 0 to 10 at t"0)5 s and these variations are
shown in Figures 6 and 7 respectively. Figure 8 shows the variations of temperature "eld



Figure 4. Variations of temperature "eld ¹ with distance x at t"0)1 s (mechanical source).**, L}S; }} } },
G}L; **, G}N.

Figure 5. Variations of normal force stress t
zz

with distance x at t"0)5 s (mechanical source).**, L}S; }} } },
G}L; **, G}N.
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¹ at t"0)5 s and it is noticed that for G}L theory variations take place in a very small
range in comparison to L}S and G}N theories.

Variations of t
zz

at t"1)5 s for L}S and G}L theories lie in a large range and have
opposite behaviour as compared to G}N theory and these variations have been shown in
Figure 9. It is further noticed that for L}S and G}L theories, there is a sharp increase in the
values of t

zz
, whereas the values decrease for G}N theory as x lies between 0)x)2)0. As



Figure 6. Variations of normal displacement u
z

with distance x at t"0)5 s (mechanical source). **, L}S;
}} } }, G}L; **, G}N.

Figure 7. Variations of tangential couple stress m
zy

with distance x at t"0)5 s (mechanical source).**, L}S;
}} } }, G}L; **, G}N.
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x increases further, the values of t
zz

oscillate for all the three theories. Figure 10 shows the
variations of u

z
at t"1)5 s and it is observed that the behaviour of u

z
is similar for all the

three di!erent theories although its magnitude values are di!erent. The variations of m
zy

are
oscillatory for all the three theories at t"1)5 s and values of m

zy
lie in a very small range as

depicted in Figure 11. Figure 12 shows the behaviour of temperature "eld ¹ at t"1)5 s. It is
noticed that the variations for G}L theory lie in a very small range as compared to L}S and



Figure 8. Variations of temperature "eld ¹ with distance x at t"0)5 s (mechanical source).**, L}S; }} } },
G}L; **, G}N.

Figure 9. Variations of normal force stress t
zz

with distance x at t"1)5 s (mechanical source).**, L}S; }} } },
G}L; **, G}N.
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G}N theories, although the variations for L}S theory are in an opposite manner to G}N
theory.

4.2. CASE II: THERMAL SOURCE

The variations of t
zz

at t"0)1 s are shown in Figure 13, where, the original values for
G}L theory have been divided by 103 to depict the comparison simultaneously with L}S



Figure 10. Variations of normal displacement u
z

with distance x at t"1)5 s (mechanical source). **, L}S;
}} } }, G}L; **, G}N.

Figure 11. Variations of tangential couple stress m
zy

with distance x at t"1)5 s (mechanical source).**, L}S;
}} } }, G}L; **, G}N.
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and G}N theories and it is observed that the values for L}S theory lie in a very small range
in comparison to G}L and G}N theories. The variations of u

z
at t"0)1 s are shown in

Figure 14. The values of u
z
for L}S theory vary in a very short range in comparison to G}L

and G}N theories and the variations for G}L theory have been shown after dividing the
original values by 102. Also, the behaviour of u

z
for G}N theory is opposite from those for

L}S and G}L theories. Variations of m
zy

at t"0)1 s are almost similar for three di!erent



Figure 12. Variations of temperature "eld ¹ with distance x at t"1)5 s (mechanical source).**, L}S; }} } },
G}L; **, G}N.

Figure 13. Variations of normal force stress t
zz

with distance x at t"0)1 s (thermal source).**, L}S; }} } },
G}L; **, G}N.
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theories although the magnitude values are di!erent as shown in Figure 15, where the
original values of m

zy
for G}L theory have been divided by 10 to depict the comparison of

three di!erent theories. The variations of temperature "eld ¹ at t"0)1 s are shown in
Figure 16, and it is observed that the behaviour of ¹ for the three di!erent theories is
di!erent.



Figure 14. Variations of normal displacement u
z
with distance x at t"0)1 s (thermal source).**, L}S; }} } },

G}L; **, G}N.

Figure 15. Variations of tangential couple stress m
zy

with distance x at t"0)1 s (thermal source). **, L}S;
}} } }, G}L; **, G}N.
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Figure 17 depicts the variations of t
zz

at t"0)5 s and it is observed that values of t
zz

for
L}S theory lie in a very small range in comparison to G}L and G}N theories and the
behaviour of t

zz
for the three theories is also di!erent. Variations of u

z
at t"0)5 s are shown

in Figure 18, where the original values for L}S theory have been multiplied by 10 and the
behaviour of u

z
for the three theories is di!erent to each other. From Figure 19, it is



Figure 16. Variations of temperature "eld ¹ with distance x at t"0)1 s (thermal source). **, L}S; }} } },
G}L; **, G}N.

Figure 17. Variations of normal force stress t
zz

with distance x at t"0)5 s (thermal source).**, L}S; }} } },
G}L; **, G}N.
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observed that variations of m
zy

for L}S and G}L theories lie in a very small range in
comparison to G}N theory at t"0)5 s. The range of variations of temperature "eld
for G}L and G}N theories is small in comparison to L}S theory and the variations
for the three theories are also di!erent and these variations are shown in Figure 20 at
t"0)5 s.



Figure 18. Variations of normal displacement u
z
with distance x at t"0)5 s (thermal source).**, L}S; }} } },

G}L; **, G}N.

Figure 19. Variations of tangential couple stress m
zy

with distance x at t"0)5 s (thermal source). **, L}S;
}} } }, G}L; **, G}N.
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The values of t
zz

at t"1)5 s for L}S theory lie in a very small range as compared to G}L
and G}N theories and the behaviour of t

zz
for L}S theory is observed to be di!erent from

G}L and G}N theories as illustrated in Figure 21. The values of u
z
at t"1)5 s are again

observed to be very small for L}S theory in comparison to G}L and G}N theories in
Figure 22, where, the behaviour of u

z
for the three theories is di!erent. The behaviour of



Figure 20. Variations of temperature "eld ¹ with distance x at t"0)5 s (thermal source). **, L}S; }} } },
G}L; **, G}N.

Figure 21. Variations of normal force stress t
zz

with distance x at t"1)5 s (thermal source).**, L}S; }} } },
G}L; **, G}N.
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m
zy

for the three di!erent theories is shown in Figure 23 at t"1)5 s and it is noticed that the
range of variation for G}N theory is very small in comparison to L}S and G}L theories and
the behaviour for G}N theory is also di!erent from L}S and G}L theories. The values of
temperature "eld ¹ for L}S and G}L theories lie in a very small range in comparison to
G}N theory as shown in Figure 24 at t"1)5 s and the behaviour of ¹ for the three theories
is also observed to be di!erent.



Figure 22. Variations of normal displacement u
z
with distance x at t"1)5 s (thermal source).**, L}S; }} } },

G}L; **, G}N.

Figure 23. Variations of tangential couple stress m
zy

with distance x at t"1)5 s (thermal source). **, L}S;
}} } }, G}L; **, G}N.
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5. CONCLUSIONS

The magnitude of variations of the normal force stress, normal displacement, tangential
couple stress and temperature "eld is observed to have large values at small times, which
then become smaller and smaller with the passage of time. Also, the values of these
quantities are observed to be di!erent for the three theories (L}S, G}L and G}N) for both



Figure 24. Variations of temperature "eld ¹ with distance x at t"1)5 s (thermal source). **, L}S; }} } },
G}L; **, G}N.
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the cases and at all the three times. Since, the source applied in both the cases (mechanical
and thermal source) is instantaneous, so the range of distribution for all the expressions
becomes small with the increase in value of distance &x'. The resulting stresses and
displacements can be used in estimating the e!ects of a surface pressure wave.
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